porno
Gündem

Yapay Sinir Ağları (YSA)’nın Avantajları ve Dezavantajları

Yapay sinir ağları veya kısa adıyla YSA, en basit tanımı ile insan beyninin bilgisayar kodlarıyla modellenmesidir.Yapı taşı nöronlardır. Bilindiği gibi insan beyninde ortalama 100 milyar nöron bulunmaktadır. Her bir nöronda 1.000 – 100.000 arasında bağlantı noktası vardır. İnsan  bilgi bu bağlantılara dağıtılmış halde saklanmaktadır ve bizler gerektiğinde bu bilgilerin birden fazlasını aynı anda paralel olarak hafızamızdan çekip kullanabiliriz. Bu yapısıyla bir insan beyninin çok ama çok güçlü binlerce paralel işlemcinin bir araya gelmesiyle oluştuğunu söylesek pek de yanılmayız.
nöron yapısı
                                                                                                                           Nöron yapısı
Çok katmanlı yapay sinir ağları içinde de insan beynine benzer şekilde yerleştirilmiş nöronlar bulunmaktadır. Her nöron diğer nöron hücrelere belirli katsayılar ile bağlantılıdırlar. Eğitim sırasında öğrenmek istediğimiz bilgi bu bağlantı noktalarına dağıtılarak ağın öğrenilmesi sağlanır.
Yapay Sinir Ag katmanlari

                                                                                               Yapay Sinir Ağı Katmanları

 

Yukarıdaki şekilde de belirtildiği gibi bir sinir ağı girdi katmanı, ara katman ve çıktı katmanı olmak üzere toplam 3 katmandan oluşmaktadır. Burada gösterilen mavi kutucukların her biri nöronları, oklar da bağlantı noktalarını temsil etmektedir. Girdi katmanında eğitim için hazırlanan veri seti ağa gösterilir. Ağ ara katmandaki bağlantı noktalarına öğrendiği olayların ağırlıklarını atar. Her bağlantı noktasının bir değeri olmak zorunda olmadığı gibi bazı noktaların değeri sıfır da olabilir. Bağlantı noktalarındaki sıfır değerlerinin çıktımızı da sıfır yapmaması için katmanlar arasında bir eşik değeri eklenmektedir.

Son olarak ağımızı test etmemiz gerekmektedir. Bunun için veri setinden farklı olarak çıktı sonuçları olmayan bir test seti ağa gösterilir. Ve ağ bize bu test setinin her olayı için bir çıktı değeri verir. Bu çıktı değerlerinin yorumlanması ile de sonuçlar elde edilir.

Yapay Sinir Ağları (YSA)’nın Avantajları Neler?

Bilgilerin ağın tamamında saklanması: Geleneksel programlamada olduğu gibi bilgiler bir veri tabanında değil, ağın tamamına yayılarak saklanır. Bir yada bir kaç bilginin kaybolması ağın çalışmasını engellememektedir.

Eksik bildi ile çalışabilme: YSA’lar eğitildikten sonra veriler eksik bilgi içerse dahi, çıktı üretebilirler. Burada performans kaybı eksik bilginin önemine bağlıdır.

Hata töleransına sahip olma: YSA’ların bir ya da birden fazla hücresinin bozulması çıktı üretmesini engellemez. Bu özellik ağları hata töleransına sahip kılar.

Dağıtık hafızaya sahip olma: YSA’nın öğrenebilmesi için örneklerin belirlenmesi, bu örneklerin ağa gösterilerek istenen çıktılara göre ağın eğitilmesi gerekmektedir. Ağın başarısı, seçilen örnekler ile doğru orantılıdır, ağa olay bütün yönleri ile gösterilemezse ağ yanlış çıktılar üretebilir

Dereceli bozulma: Bir ağ, zaman içerisinde yavaş ve göreceli bir bozulmaya uğrar. Ağ problemin ortaya çıktığı anda hemen bozulmaz.

Makina Öğrenmesi yapabilme: Yapay sinir ağları olayları öğrenerek benzer olaylar karşısında yorum yaparak karar verebilirler.

Paralel işlem yeteneği: Yapay sinir ağları birden fazla işi aynı anda gerçekleştirebilecek sayısal güce sahiptir.

Yapay Sinir Ağları (YSA)’nın Dezavantajları Neler?

Donanım bağımlı olmasıYapay sinir ağları yapısı gereği paralel işlem gücüne sahip işlemcilere ihtiyaç duymaktadır. Bu nedenle gerçekleştirilmesi donanıma bağımlıdır.

Ağın davranışlarının açıklanamaması: Bu, YSA’ların en önemli sorunudur. YSA bir probleme çözüm ürettiği zaman, bunun neden ve nasıl olduğuna ilişkin bir ipucu vermez. Bu durum ağa olan güveni azaltıcı bir unsurdur.

Uygun ağ yapısının belirlenmesi: Yapay sinir ağlarının yapısının belirlenmesinde belirli bir kural yoktur. Uygun ağ yapısı deneyim ve deneme yanılma yolu ile elde edilmektedir.

Problemin ağa gösterim zorluğu: YSA’lar nümerik bilgiler ile çalışabilmektedirler. Problemler YSA’lara tanıtılmadan önce nümerik değerlere çevrilmek zorundadırlar. Burada belirlenecek gösterim mekanizması ağın performansını doğrudan etkileyecektir. Bu da kullanıcının yeteneğine bağlıdır.

Ağın eğitim süresinin bilinmemesi: Ağın örnekler üzerindeki hatasının belirli bir değerin altına indirilmesi eğitimin tamamlandığı anlamına gelmektedir. Bu değer bize optimum neticeler vermemektedir.

Kaynak: Elektrik Port,Engineeronadisk

Yorum Yaz

Yorum yazmak için tıklayın